Microemboli in our bypass circuits: a contemporary audit.

نویسندگان

  • Timothy W Willcox
  • Simon J Mitchell
چکیده

Cardiopulmonary bypass (CPB) may introduce microemboli into the patient's arterial circulation. These may arise from the CPB circuit. Most relevant studies have been performed in vitro; there are relatively few clinical studies. We used the Emboli Detection and Classification quantifier (EDAC) (Luna Innovations, Roanoke, VA) in a prospective clinical audit of emboli in a contemporary CPB circuit. Following ethics approval, standard clinical CPB circuits in patients undergoing CPB were instrumented with three EDAC system probes placed on the venous line, outlet of the hard-shell venous reservoir (HSVR), and distal to the arterial line filter. This was synchronized with the perfusion data management system and emboli number and volume were recorded at 30-second intervals. Recorded observations and combined data from both the EDAC and data management system were analyzed. We report data from the first 12 patients (24.5 hours of CPB) of a larger series currently being performed. The mean total emboli count per minute was significantly greater downstream of the HSVR than in the venous line and significantly less downstream of the arterial line filter than either of the above. The total count downstream of both the HSVR and the arterial line filter was greater when the vent pump was on vs. off. Despite the significant increase in emboli count downstream of the reservoir during vent operation there was a significant reduction in the total volume of emboli in this position compared with the venous line. This was further reduced by the arterial line filter. Nevertheless, the total embolic volume was greater downstream of the HSVR and the arterial filter with the vent on vs. off. The two overwhelming sources of emboli emanating from our CPB circuit were the use of the left ventricular vent and air entrained from the venous line. Such audit enables refinement of CPB management and potential component redesign which may make CPB safer and improve patient outcome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits.

Microemboli may impair cognitive function in patients undergoing heart surgery. Prebypass filtration has been shown to reduce particle load in the cardiopulmonary bypass (CPB) priming fluid. This study was performed to detect the embolic load of CPB priming fluid, to determine the efficacy of a 0.2 microm prebypass filter (PBF) in reducing emboli in the range of 0.1-5 microm and to provide guid...

متن کامل

How effective are cardiopulmonary bypass circuits at removing gaseous microemboli?

An association has been demonstrated between intravascular microemboli and organ injury during cardiopulmonary bypass (CPB). Air may be inadvertently introduced into the venous line during CPB resulting in the formation of gaseous microemboli (GME). We studied the ability of CPB circuits, from five different manufacturers, to remove GME originating from the introduction of air into the venous l...

متن کامل

Perspective on Cerebral Microemboli in Cardiac Surgery: Significant Problem or Much Ado About Nothing?

From the time an association was perceived between cardiac surgery and post-operative cognitive dysfunction (POCD), there has been interest in arterial microemboli as one explanation. A succession of studies in the mid-1990s reported a correlation between microemboli exposure and POCD and there followed a focus on microemboli reduction (along with other strategies) in pursuit of peri-operative ...

متن کامل

Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.

Miniaturizing cardiopulmonary bypass (CPB) circuits to reduce hemodilution and allogenic blood product administration is common in cardiac surgery. One major concern associated with smaller CPB circuits is a possible increase in gaseous microemboli (GME) sent to the cerebral vasculature, which is exacerbated by vacuum-assisted venous drainage (VAVD). The use of VAVD has increased with smaller v...

متن کامل

In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass

Objective Usually only FDA-approved oxygenators are subject of studies by the international scientific community. The objective of this study is to evaluate two types of neonatal membrane oxygenators in terms of transmembrane pressure gradient, hemodynamic energy transmission and gaseous microemboli capture in simulated cardiopulmonary bypass systems. Methods We investigated the Braile Infant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of extra-corporeal technology

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2009